organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rong Wan,^a Feng Wu,^a* Feng Han,^a Lin Cao^b and Jin-Tang Wang^a

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China, and ^bDepartment of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, People's Republic of China

Correspondence e-mail: rwan01@jlonline.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å Disorder in main residue R factor = 0.040 wR factor = 0.131 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{18}H_{12}F_3N_3OS_2$, was synthesized by the reaction of [(Z)-1-phenylmethylidene]{5-[3-(trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl}amine and mercaptoacetic acid. In the structure there are intramolecular $C-H\cdots S$ and $C-H\cdots N$ and intermolecular $C-H\cdots N$ hydrogen bonds.

2-Phenyl-3-{5-[3-(trifluoromethyl)phenyl]-

1,3,4-thiadiazol-2-yl}thiazolidin-4-one

Comment

Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal and herbicidal activities (Chen *et al.*, 2000; Kidwai *et al.*, 2000; Vicentini *et al.*, 1998); some show insecticidal activities (Arun *et al.*, 1999; Wasfy *et al.*, 1996).

We are focusing our synthetic and structural studies on thiadiazole derivatives and we have published recently the structure of 3-[5-(4-fluorophenyl)-1,3,4-thiadiazol-2-yl]-2-phenylthiazolidin-4-one (Wan*et al.*, 2006). Here we report the crystal structure of a close analog, (I), in which the 4-fluorophenyl substituent is replaced by 3-trifluoromethyl. The dihedral angle between the thiadiazole and 3-(trifluoromethyl)phenyl rings is 6.4 (2)° and is larger than the angle between the thiadiazole and*p*-fluorobenzene rings [2.8 (2)°].

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are normal (Allen *et al.*, 1987). There are intramolecular $C-H\cdots S$ and $C-H\cdots N$ and intermolecular $C-H\cdots N$ hydrogen bonds (Fig. 1 and Table 1). The thiazolidinone adopts a twist conformation; the dihedral angle between the C7/C8/S1 and C7/N1/C8 planes is 20.8 (15)°. The thiadiazole ring is a planar aromatic heterocycle. The phenyl substituent is approximately perpendicular to the mean plane of the thiazolidinone ring because of the lack of conjugation through the saturated sp^3 atom C7. Intermolecular $C-H\cdots N$ hydrogen bonds result in a three-dimensional network (Fig. 2 and Table 1).

Experimental

Benzylidene[5-[3-(trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl]amine (5 mmol) and mercaptoacetic acid (5 mmol) were dissolved in toluene (50 ml). The resulting water was removed by distillation over a period of 5 h. The reaction mixture was left to cool to room Received 15 August 2006 Accepted 18 August 2006

04072 Wu et al. • C₁₈H₁₂F₃N₃OS₂

© 2006 International Union of Crystallography

All rights reserved

temperature, filtered, and the solid was recrystallized from acetone to give pure compound (I) (m.p. 452–453 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

V = 868.9 (3) Å³

 $D_x = 1.557 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.35 \text{ mm}^-$

T = 293 (2) K

 $R_{\rm int} = 0.018$

 $\theta_{\rm max} = 26.0^{\circ}$

Block, colorless

 $0.40 \times 0.40 \times 0.30 \ \text{mm}$

3 standard reflections

every 200 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.33 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.32 \text{ e } \text{\AA}^{-3}$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.0016 (5)

3405 independent reflections

2823 reflections with $I > 2\sigma(I)$

Z = 2

Crystal data

 $\begin{array}{l} C_{18}H_{12}F_{3}N_{3}OS_{2}\\ M_{r}=407.43\\ \text{Triclinic, }P\overline{1}\\ a=7.5370~(15)~\text{\AA}\\ b=10.538~(2)~\text{\AA}\\ c=11.380~(2)~\text{\AA}\\ a=79.86~(3)^{\circ}\\ \beta=78.03~(3)^{\circ}\\ \gamma=84.70~(3)^{\circ} \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.872, T_{\max} = 0.902$ 3679 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.131$ S = 1.013405 reflections 272 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

S1-C8	1.805 (2)	F3'-C18	1.326 (17)
S1-C7	1.828 (2)	O-C9	1.208 (3)
S2-C10	1.7295 (19)	N1-C9	1.378 (2)
S2-C11	1.7385 (19)	N1-C10	1.385 (3)
F1-C18	1.371 (14)	N1-C7	1.480 (2)
F2-C18	1.334 (16)	N2-C10	1.305 (2)
F3-C18	1.327 (18)	N2-N3	1.376 (2)
F2′-C18	1.323 (15)	N3-C11	1.303 (2)
F1'-C18	1.275 (12)		
C8-S1-C7	93.43 (10)	C9-C8-S1	108.04 (15)
C10-S2-C11	85.90 (9)	O-C9-N1	122.7 (2)
C9-N1-C10	122.03 (17)	O-C9-C8	126.02 (19)
C9-N1-C7	119.02 (17)	N1-C9-C8	111.29 (18)
C10-N1-C7	118.90 (15)	N2-C10-N1	119.94 (17)
C10-N2-N3	111.35 (16)	N2-C10-S2	115.44 (15)
C11-N3-N2	113.12 (16)	N1-C10-S2	124.57 (14)
N1-C7-C5	112.51 (16)	N3-C11-C12	122.10 (17)
N1-C7-S1	104.07 (13)	N3-C11-S2	114.17 (15)
C5-C7-S1	113.96 (13)	C12-C11-S2	123.67 (14)
N1-C7-H7A	108.7		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8B\cdots N2^{i}$	0.97	2.62	3.573 (3)	168
C13−H13A···N3	0.93	2.52	2.831 (3)	100
$C17 - H17A \cdot \cdot \cdot S2$	0.93	2.81	3.192 (2)	106

Symmetry code: (i) x + 1, y, z.

 $\begin{array}{c} F3 \\ F1 \\ (14 \\ (13 \\ (14 \\ (13 \\ (14 \\ (13 \\ (14 \\ (13 \\ (14 \\ (13 \\ (13 \\ (14 \\ (13 \\ (13 \\ (14 \\ (13 \\ ($

Figure 1

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

All H atoms were positioned geometrically, with C-H = 0.93–0.98 Å, and included in the refinement in a riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *CAD-4 Software* (Enraf–Nonius,1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998– 1001.

Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315. Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The

Netherlands. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46–48. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.
- Wan, R., Wu, F., Yin, J. & Wang, J.-T. (2006). Acta Cryst. E62, 0746-0747.
- Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218–1220.