Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rong Wan, ${ }^{\text {a }}$ Feng Wu, ${ }^{\text {a* }}$ Feng Han, ${ }^{\text {a }}$ Lin Cao ${ }^{\text {b }}$ and Jin-Tang Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, People's Republic of China

Correspondence e-mail: rwan01@jlonline.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.040$
$w R$ factor $=0.131$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{OS}_{2}$, was synthesized by the reaction of [(Z)-1-phenylmethylidene] $[5-[3$-(trifluorometh-yl)phenyl]-1,3,4-thiadiazol-2-yl\}amine and mercaptoacetic acid. In the structure there are intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal and herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998); some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996).

(I)

We are focusing our synthetic and structural studies on thiadiazole derivatives and we have published recently the structure of 3-[5-(4-fluorophenyl)-1,3,4-thiadiazol-2-yl]-2-phenylthiazolidin-4-one (Wan et al., 2006). Here we report the crystal structure of a close analog, (I), in which the 4-fluorophenyl substituent is replaced by 3-trifluoromethyl. The dihedral angle between the thiadiazole and 3-(trifluoromethyl)phenyl rings is $6.4(2)^{\circ}$ and is larger than the angle between the thiadiazole and p-fluorobenzene rings [2.8(2) ${ }^{\circ}$].

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are normal (Allen et al., 1987). There are intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 1 and Table 1). The thiazolidinone adopts a twist conformation; the dihedral angle between the $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{S} 1$ and $\mathrm{C} 7 / \mathrm{N} 1 / \mathrm{C} 8$ planes is $20.8(15)^{\circ}$. The thiadiazole ring is a planar aromatic heterocycle. The phenyl substituent is approximately perpendicular to the mean plane of the thiazolidinone ring because of the lack of conjugation through the saturated $s p^{3}$ atom C 7 . Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds result in a three-dimensional network (Fig. 2 and Table 1).

Experimental

Benzylidene[5-[3-(trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl]amine (5 mmol) and mercaptoacetic acid (5 mmol) were dissolved in toluene (50 ml). The resulting water was removed by distillation over a period of 5 h . The reaction mixture was left to cool to room

Received 15 August 2006 Accepted 18 August 2006
temperature, filtered, and the solid was recrystallized from acetone to give pure compound (I) (m.p. 452-453 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{OS}_{2}$
$M_{r}=407.43$
Triclinic, $P \overline{1}$
$a=7.5370$ (15) \AA
$b=10.538$ (2) \AA
$c=11.380$ (2) A
$\alpha=79.86$ (3) ${ }^{\circ}$
$\beta=78.03$ (3) ${ }^{\circ}$
$\gamma=84.70(3)^{\circ}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.872, T_{\text {max }}=0.902$
3679 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.131$
$S=1.01$
3405 reflections
272 parameters
H -atom parameters constrained
$V=868.9(3) \AA^{3}$
$Z=2$
$D_{x}=1.557 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.40 \times 0.40 \times 0.30 \mathrm{~mm}$

3405 independent reflections 2823 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections every 200 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0016(5)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C8	$1.805(2)$	F3'-C18	$1.326(17)$
S1-C7	$1.828(2)$	O-C9	$1.208(3)$
S2-C10	$1.7295(19)$	N1-C9	$1.378(2)$
S2-C11	$1.7385(19)$	N1-C10	$1.385(3)$
F1-C18	$1.371(14)$	N1-C7	$1.480(2)$
F2-C18	$1.334(16)$	N2-C10	$1.305(2)$
F3-C18	$1.327(18)$	N2-N3	$1.376(2)$
F2 ${ }^{\prime}-\mathrm{C} 18$	$1.323(15)$	N3-C11	$1.303(2)$
F1 18	$1.275(12)$		
C8-S18	$93.43(10)$	C9-C8-S1	$108.04(15)$
C10-S2-C11	$85.90(9)$	O-C9-N1	$122.7(2)$
C9-N1-C10	$122.03(17)$	O-C9-C8	$126.02(19)$
C9-N1-C7	$119.02(17)$	N1-C9-C8	$111.29(18)$
C10-N1-C7	$118.90(15)$	N2-C10-N1	$119.94(17)$
C10-N2-N3	$111.35(16)$	N2-C10-S2	$115.44(15)$
C11-N3-N2	$113.12(16)$	N1-C10-S2	$124.57(14)$
N1-C7-C5	$112.51(16)$	N3-C11-C12	$122.10(17)$
N1-C7-S1	$104.07(13)$	N3-C11-S2	$114.17(15)$
C5-C7-S1	$113.96(13)$	C12-C11-S2	$123.67(14)$
N1-C7-H7A	108.7		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.97	2.62	$3.573(3)$	168
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{~N} 3$	0.93	2.52	$2.831(3)$	100
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{~S} 2$	0.93	2.81	$3.192(2)$	106

[^1]

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

Figure 2
Part of the crystal structure of (I). The dashed line indicates an intermolecular hydrogen bond.

All H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$, and included in the refinement in a riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius,1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

organic papers

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Arun, K. P., Nag, V. L. \& Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 9981001.

Chen, H. S., Li, Z. M. \& Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kidwai, M., Negi, N. \& Misra, P. (2000). J. Indian Chem. Soc. 77, 46-48.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany
Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Vicentini, C. B., Manfrini, M., Veronese, A. C. \& Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.
Wan, R., Wu, F., Yin, J. \& Wang, J.-T. (2006). Acta Cryst. E62, o746-o747.
Wasfy, A. A., Nassar, S. A. \& Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218-1220.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry code: (i) $x+1, y, z$.

